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Sub-lattice parallel heat bath dynamics is applied to various one dimensional
Solid-On-Solid interface models. The existence of invariant product measures in
the gradient variables allows to compute exactly the interface speed as function
of the slope. This function can have many convex and concave parts, depending
on lattice modulation and unboundedness of the state space. This may be asso-
ciated with the occurrence of corners in the macroscopic scaling shapes.
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1. INTRODUCTION

The Solid-On-Solid model (1) deals with height variables hi ¥ Z or R,
indexed by the lattice sites i ¥ Zd, here d=1. In Zd+1, the interface is the set
of points (i, hi), and one may think that there is one phase of matter above
the interface and another phase below the interface. We are interested in
non-equilibrium, at a coarse grained scale where stochastic dynamics is
appropriate. The choice of a dynamics is motivated by an energy function,
which we take as

H=J C
i

(1+|hi+1 − hi |n) − E C
i

hi (1.1)

For n=1, the first term is proportional to the interface length, and J is the
interface energy per unit length. The second term is proportional to the
area below the interface. The coefficient E is the difference of free energy
per unit area between the two phases.



We only use H to write a detailed balance condition for our dynamics:
suppose hi is being updated and denote whi Q hiŒ

the probability (or probabil-
ity density) that hi goes to h −

i, the other hj’s being held fixed. Then we
require

whi Q hiŒ

whiŒ Q hi

=e − DH=e − J(|hi+1 − hiŒ|
n+|hŒi − hi − 1|n − |hi+1 − hi|

n − |hi − hi − 1|n)+E(hiŒ − hi) (1.2)

We take E > 0, so that the hi’s will go to infinity as time goes to infinity
(the phase below the interface grows at the expense of the phase above).
We may look at the gradient variables gi=hi+1 − hi. A simple case occurs
when the gradient variables take values in {+1, −1}. The model becomes
the asymmetric simple exclusion process (ASEP). Under fairly general
conditions on the stochastic dynamics, the invariant measures of the ASEP
are the product over bonds (i, i+1) of independent identically distributed
measures on {+1, −1}.

This is not the case when the state space of the gradient variables has
more than two states. For gradient variables taking values in {+1, 0, −1},
conditions for invariant product measures were given in ref. 2: the param-
eters of the dynamics should be restricted to a manifold of co-dimension
one, whose equation was given.

In the present paper we start from product measures and find
stochastic dynamics which leave them invariant. The sub-lattice parallel
heat bath dynamics was first used in numerical work. When applied with
E=0, it relaxes to the appropriate Gibbs measure. Compared to random
sequential updates, it has the advantage of being defined also on the
infinite lattice.

Allowing a more general state space and a more general detailed
balance condition gives rise to interesting phase diagrams and scaling
shapes. As in the cases studied in ref. 2, it is expected that the accidental
occurrence of product measures is not responsible for the general features
of these diagrams and shapes.

In Section 2 we define sub-lattice parallel heat bath dynamics in Zd,
with invariant product measures. In Section 3 we apply the results to d=1
Solid-On-Solid models. Examples are given in Section 4. In Section 5 we
compute the interface speed as function of the interface slope.

2. SUB-LATTICE PARALLEL HEAT BATH DYNAMICS

Denote e1,..., ed an orthonormal basis in Zd. An oriented lattice bond
starting from i ¥ Zd in the en direction is denoted i, i+en. We consider
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random variables gi, i+en
¥ Z called bond variables. In d=1 they can be

identified with gradient variables.
An equivalence relation ’ is given between sets of 2d bond variables

incident upon a site i. This equivalence relation is assumed to be such that

(gi − e1, i, gi, i+e1
,..., gi − ed, i, gi, i+ed

) ’ (gi, i+e1
, gi − e1, i,..., gi, i+ed

, gi − ed, i) (2.1)

An arbitrary configuration around i is in equivalence with the configura-
tion obtained by symmetry about the center i. An example of such an
equivalence relation is the following: g ’ gŒ at i if and only if

gi − e1, i+gi, i+e1
+...+gi − ed, i+gi, i+ed

=g −

i, i+e1
+g −

i − e1, i+ · · · +g −

i, i+ed
+g −

i − ed, i

(2.2)

which may be interpreted as equal total charge around i.
Another example: g ’ gŒ at i if and only if (gi − e1, i, gi, i+e1

,..., gi − ed, i,
gi, i+ed

) is a permutation of (gi, i+e1
, gi − e1, i,..., gi, i+ed

, gi − ed, i), which can be
interpreted as identical list of particles present around i.

The lattice Zd is bipartite: sites are even or odd according to the parity
of the sum of their coordinates. This allows to define two equivalence
relations ’o and ’e between configurations:

g ’o gŒ if and only if g ’ gŒ at i -i odd

and

g ’e gŒ if and only if g ’ gŒ at i -i even

Next we introduce 2d probability measures on Z denoted Q1, R1,...,
Qd, Rd, and the two candidates for stationary measures under the dynamics
to be defined:

me(g)= D
i even

D
d

n=1
Qn(gi − en, i) Rn(gi, i+en

),

mo(g)= D
i odd

D
d

n=1
Qn(gi − en, i) Rn(gi, i+en

) (2.3)

Time is discrete, t ¥ Z+. Given a configuration g2t=g at some even time,
the configuration at time 2t+1 is distributed according to

P(g2t+1=gŒ | g2t=g)=˛ mo(gŒ)
;gœ ’o g mo(gœ)

if gŒ ’o g

0 otherwise
(2.4)
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and similarly at the following time

P(g2t+2=g | g2t+1=gŒ)=˛ me(g)
;gœ ’e gŒ me(gœ)

if g ’e gŒ

0 otherwise
(2.5)

Let us compute

C
g

P(g2t+1=gŒ | g2t=g) me(g)

= C
g ’o gŒ

mo(gŒ)
;gœ ’o g mo(gœ)

me(g)

=mo(gŒ)
;g ’o gŒ me(g)

;gœ ’o gŒ mo(gœ)

=mo(gŒ) D
i odd

; i
g ’ gŒ <d

n=1 Qn(gi − en, i) Rn(gi, i+en
)

; i
gœ ’ gŒ <d

n=1 Rn(g'

i − en, i) Qn(g'

i, i+en
)

(2.6)

where ; i means a sum over bond variables incident upon i. Now (2.1)
allows a change of summation variable in the denominator:

g'

i − en, i=gi, i+en
, g'

i, i+en
=gi − en, i

so that numerator and denominator cancel out and

C
g

P(g2t+1=gŒ | g2t=g) me(g)=mo(gŒ) (2.7)

Similarly

C
gŒ

P(g2t+2=g | g2t+1=gŒ) mo(gŒ)=me(g) (2.8)

Therefore me and mo are exchanged under the dynamics, and both are
invariant from t to t+2.

3. DYNAMICS FOR d=1 SOS MODELS

In d=1 the notation may be simplified with gi=gi, i+e1
and gi − 1=

gi − e1, i. Bond variables may be identified with the gradient of height
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variables, gi=hi+1 − hi. We choose the equivalence relation (2.2): g ’ gŒ at i
if and only if gi − 1+gi=g −

i − 1+g −

i, or hi+1 − hi − 1=h −

i+1 − h −

i − 1. The odd and
even invariant measures are

me(g)= D
i even

Q(gi − 1) R(gi) , mo(g)= D
i odd

Q(gi − 1) R(gi) (3.1)

The rules (2.4)(2.5) for the dynamics take the form

P(g2t+1=gŒ | g2t=g)= D
i odd

Q(g −

i − 1) R(g −

i)
Z(gi − 1+gi)

d(g −

i − 1+g −

i − gi − 1 − gi) (3.2)

where d( · ) is a Kronecker delta and

Z(c)=C
a

Q(a) R(c − a)

Similarly

P(g2t+2=g | g2t+1=gŒ)= D
i even

Q(gi − 1) R(gi)
Z(g −

i − 1+g −

i)
d(gi − 1+gi − g −

i − 1 − g −

i)
(3.3)

For the height variables, (3.2) translates into

P(h2t+1=hŒ | h2t=h)

= D
i odd

Q(h −

i − h −

i − 1) R(h −

i+1 − h −

i)
Z(hi+1 − hi − 1)

d(h −

i+1 − h −

i − 1 − hi+1+hi − 1) (3.4)

We see that all the h −

2i − h2i take on the same value. The dynamical rule for
the gradient variables does not fixed that value. We fix it to 0:

h2t+1
2i =h2t

2i -i (3.5)

For the same reason we fix

h2t+2
2i+1=h2t+1

2i+1 -i (3.6)

It is then sufficient to define the dynamics for

h2t={h2t
i : i even}, h2t+1={h2t+1

i : i odd}
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Fig. 1. SOS model in two space-time dimensions.

Given an initial configuration h0, the probability distribution of heights up
to some time T takes on the explicit form

P(h0 [ t [ T | h0)= D
i+t odd

0 [ t [ T − 1

Q(h t+1
i − h t

i − 1) R(h t
i+1 − h t+1

i )
Z(h t

i+1 − h t
i − 1)

(3.7)

We now have a two space-time dimensional SOS model, with Boltz-
mann weights Q, R and Z−1 associated to bonds parallel to the first
diagonal, second diagonal and horizontal axis respectively (Fig. 1).

The same construction works with real height and bond variables.
Now Q and R are densities with respect to the Lebesgue measure,

Z(c)=F Q(a) R(c − a) da

and (3.1) and (3.7) become

me(dg)= D
i even

Q(gi − 1) R(gi) dgi − 1 dgi ,

(3.8)
mo(dg)= D

i odd
Q(gi − 1) R(gi) dgi − 1 dgi

P(dh0 [ t [ T | h0)= D
i+t odd

0 [ t [ T − 1

Q(h t+1
i − h t

i − 1) R(h t
i+1 − h t+1

i )
Z(h t

i+1 − h t
i − 1)

dh t+1
i (3.9)

4. EXAMPLES

The case gi ¥ {+1, 0, −1} has been thoroughly studied in ref. 2. Here
we concentrate on cases where the probability measures Q and R have
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densities with respect to the Lebesgue measure on R or the uniform
measure on Z of the form

Ql(g)=e − J |g|n+(l+E
2
) g/norm., Rl(g)=e − J|g|n+(l − E

2
) g/norm. (4.1)

with n=1, 2 or 4, J > 0, E > 0. The parameter l is in the range l ¥

(−J+E/2, J − E/2) for n=1 and l ¥ (−., +.) for n > 1.
The transition rates (3.2) take the form

P(g2t+1=gŒ | g2t=g)

= D
i odd

e − J(|gŒi − 1|n+|giŒ|
n)+E

2
(gŒi − 1 − giŒ)

Z̃(gi − 1+gi)
d(g −

i − 1+g −

i − gi − 1 − gi) (4.2)

with

Z̃(c)= C
a ¥ Z

e − J(|a|n+|c − a|n)+E
2

(c − 2a) (4.3)

The dynamics is thus independent of l, and admits a one-parameter family
of invariant measures indexed by l.

The transition rates for heights (3.4)–(3.6) take the form

P(h2t+1=hŒ | h2t=h)=D
i odd

e − J(|hiŒ − hi − 1|n+|hi+1 − hiŒ|
n)+EhiŒ − E

2
(hi − 1+hi+1)

Z̃(hi+1 − hi − 1)
(4.4)

where Z̃ is the same as (4.3). If we define whi Q hiŒ
as the factor indexed by i

in (4.4), we find that it obeys (1.2).
For the Gaussian case, n=2 with continuous variables, we find that

Z̃(c), now defined with an integral over a, is proportional to exp(−Jc2/2),
hence a more explicit form for (4.4) and for the space-time measure:

P(dh0 [ t [ T | h0)= D
i+t odd

0 [ t [ T − 1

(e − J (|hi
t+1 − ht

i − 1|2+|ht
i+1 − hi

t+1|2 − 1
2 |ht

i+1 − ht
i − 1|2)

· e
E
2

(hi
t+1 − ht

i − 1)+E
2

(hi
t+1 − ht

i+1) dh t+1
i )/norm. (4.5)

5. INTERFACE MEAN SLOPE AND SPEED

Let

OgPQ=F g Q(g) dg , OgPR=F g R(g) dg
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and similarly with sums instead of integrals in the case of discrete variables.
In the stationary states (3.1) constructed with Q and R, the interface mean
slope, which we denote tan h, is given by

tan h=1
2 (OgPQ+OgPR) (5.1)

The corresponding mean speed V(tan h) is defined as the average variation
of any hi between t and t+2, as two time steps are necessary for each hi to
be updated once:

V(tan h)=E(h t+2
i − h t

i)

=E((h t+2
i − h t+1

i − 1) − (h t
i − h t+1

i − 1))

=OgPQ −OgPR (5.2)

We did the computation with i+t even. In the second line of (5.2),
(h t+2

i − h t+1
i − 1) is parallel to the first diagonal, hence distributed according to

Q, whereas (h t
i − h t+1

i − 1) is parallel to the second diagonal, hence distributed
according to R. For i+t odd, we first use (3.5) and (3.6).

With (4.1), the mean slope tan h is odd and increasing in the param-
eter l. The speed V(tan h) is even in l and therefore even in tan h.

For the usual continuous SOS model, n=1 in (4.1) and gi ¥ R, we find

OgPQ=
2l+E

J2 −1l+
E
2
22

, OgPR=
2l − E

J2 −1l −
E
2
22

(5.4)

which gives with (5.1) and (5.2) a parametric representation for the func-
tion V(tan h). The speed is minimum at h=0, increases for h > 0, and
V(tan h)/|tan h| Q 2 for tan h Q ± .. The same occurs with the discrete
n=1 SOS model, gi ¥ Z, where

OgPQ=
e−J+l+E/2 − e−J − l − E/2

1 − e−J+l+E/2 − e−J − l − E/2+e−2J

OgPR=
e−J+l − E/2 − e−J − l+E/2

1 − e−J+l − E/2 − e−J − l+E/2+e−2J

(5.5)

For the Gaussian case, n=2 and gi ¥ R, we find

tan h=
l

2J
, V=

E
2J

, (5.3)
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Fig. 2. Quadratic RSOS model, N=2, E=1.

the speed is independent of the slope. For n=2 with discrete variables
gi ¥ Z, the speed is periodic of period 1 in tan h.

A Restricted Solid On Solid (RSOS) model is obtained by restricting
the state space of the gradient variables to a finite set: gi ¥ { − N,
−N+1,..., N − 1, N}. The case N=1 was studied in ref. 2. For N=2, the
computed speed function of the slope is shown on Fig. 2 for various values
of J. The graph for J=10 is the same as for J=., or zero temperature,
and is easily understood in terms of configurations of minimal energy. In
the range of allowed slopes, the RSOS model coincides with the corre-
sponding SOS model in that limit.

The macroscopic shape of a growing cluster or a dissolving corner
modelled by our interface dynamics stems from the function V(tan h). (3)

tan θ

ta
n

θ
V

(
)

J=1/8

J=1/2

 –3

1

3
0

J=1/4

J=2

Fig. 3. Quartic RSOS model, N=3, E=1.
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Consider an initial corner h0
i =tan h0 |i|. The resulting macroscopic shape

is determined by the concave envelope of the function V(tan h) in the
interval [− tan h0, tan h0]. Straight portions in the envelope are unstable:
the corresponding slopes are absent from the macroscopic shape which
shows corners instead. From Fig. 2 one expects no corner for J=1, one
corner for J=1.25, and three corners for J=1.5, with a suitable tan h0.

For n ] 1, 2 the function V(tan h) must be tabulated numerically,
which can be done with arbitrary precision as this involves only two
integrals over R or sums over Z. For n > 2 and gi ¥ R, the speed is
maximum at h=0 and goes to zero as tan h Q ± .. For n=4,
V(tan h) ’ E/(J tan2h) as tan h Q ± ..

For the Restricted Solid On Solid (RSOS) model with N=3 and
n=4, the computed speed function of the slope is shown on Fig. 3 for
various values of J.
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rium, C. Godrèche, ed. (Cambridge University Press, Cambridge, 1991), pp. 479–582.

442 Dunlop


	INTRODUCTION
	SUB-LATTICE PARALLEL HEAT BATH DYNAMICS
	DYNAMICS FOR d=1 SOS MODELS
	4. EXAMPLES
	5. INTERFACE MEAN SLOPE AND SPEED

